Exchange Current Density
   HOME

TheInfoList



OR:

In
electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outco ...
, exchange current density is a parameter used in the
Tafel equation The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The ...
, Butler–Volmer equation and other
electrochemical kinetics Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and red ...
expressions. The Tafel equation describes the dependence of current for an electrolytic process to
overpotential In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly rela ...
. The exchange current density is the current in the absence of net electrolysis and at zero overpotential. The exchange current can be thought of as a background current to which the net current observed at various overpotentials is normalized. For a redox reaction written as a reduction at the equilibrium potential, electron transfer processes continue at electrode/solution interface in both directions. The cathodic current is balanced by the anodic current. This ongoing current in both directions is called the exchange current density. When the potential is set more negative than the formal potential, the cathodic current is greater than the anodic current. Written as a reduction, cathodic current is positive. The net current density is the difference between the cathodic and anodic current density. Exchange current densities reflect intrinsic rates of
electron transfer Electron transfer (ET) occurs when an electron relocates from an atom or molecule to another such chemical entity. ET is a mechanistic description of certain kinds of redox reactions involving transfer of electrons. Electrochemical processes ar ...
between an
analyte An analyte, component (in clinical chemistry), or chemical species is a substance or chemical constituent that is of interest in an analytical procedure. The purest substances are referred to as analytes, such as 24 karat gold, NaCl, water, etc. ...
and the
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
. Such rates provide insights into the structure and bonding in the analyte and the electrode. For example, the exchange current densities for
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
and mercury electrodes for reduction of protons differ by a factor of 1010, indicative of the excellent catalytic properties of platinum. Owing to this difference, mercury is preferred electrode material at reducing (cathodic) potentials in aqueous solution.D. T. Sawyer, A. Sobkowiak, and J. L. Roberts, ''Electrochemistry for Chemists'', John Wiley, NY, 1995.


Parameters affecting exchange current density

The exchange current density depends critically on the nature of the electrode, not only its structure, but also physical parameters such as surface roughness. Of course, factors that change the composition of the electrode, including passivating oxides and adsorbed species on the surface, also influences the electron transfer. The nature of the electroactive species (the analyte) in the solution also critically affects the exchange current densities, both the reduced and oxidized form. Less important but still relevant are the environment of the solution including the solvent, nature of other electrolyte, and temperature. For the concentration dependence of the exchange current density, the following expression is given for a one-electron reaction:Carl H. Hamann, Andrew Hamnett, Wolf Vielstich, ''Electrochemistry'', 2nd edition: 2, Wiley-VCH, 2007, , 9783527310692, page 16
(text at Google books)
/ref> :j_0 = F k_0 ( C_^ C_^\beta ) where: * C_: the concentration of the oxidized species *C_: the concentration of the reduced species * \beta: a symmetry factor * F: Faraday constant * k_0: reaction rate


Example values

{, class="wikitable sortable" , +Comparison of exchange current density for proton reduction reaction in 1 mol/kg H2SO4 , - !Electrode material !! Exchange
current
density
-log10(A/cm2) , - ,
Palladium Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself na ...
, , align=3.0 , - ,
Platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
, , align=3.1 , - ,
Rhodium Rhodium is a chemical element with the symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring i ...
, , align=3.6 , - ,
Iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density of ...
, , align=3.7 , - ,
Nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
, , align=5.2 , - ,
Gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
, , align=5.4 , - ,
Tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
, , align=5.9 , - , Niobium , , align=6.8 , - ,
Titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
, , align=8.2 , - ,
Cadmium Cadmium is a chemical element with the symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of ...
, , align=10.8 , - ,
Manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
, , align=10.9 , - ,
Lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
, , align=12.0 , - , Mercury , , align=12.3


References


See also

* Partial current Electrochemistry